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Abstract

A linear-scaling approach is described for handling inter-speaker variations.
The approach is motivated (i) by the similarity commonly observed amongst
the formant-patterns resulting from different speakers’ productions of the
same utterance, and (ii) by the fact that there are linear-scaling properties
associated with similarity. In practical terms, linear transformations of the
formant-patterns amongst different speakers are sought and interpreted as a
set of scaling relations; the formant patterns are obtained from an ensemble
of phonetically-varying segments. Using multi-speaker formant data on
Australian English “hello”, the ensemble scales are found to explain the bulk
of inter-speaker differences. The approach is independent of segmental
structure; it uses only linear regression as its main computational machinery.

1. Introduction

The present study draws its motivation from a familiar
observation that has potential implications for handling
inter-speaker variations. Indeed, despite the range of
differences caused by organic features and articulatory
habits (Nolan, 1983), there is a striking similarity
amongst the formant-patterns resulting from different
speakers’ productions of the same utterance. In
sympathy with Ohta and Fuchi’s (1984) “constancy”
interpretation, the similarity is thought to be a
manifestation of different speakers tending to utilise
similar vocal-tract configurations.

Thus, one promising implication of the similarity
phenomenon is that, irrespective of the multiple causes
of inter-speaker differences, there should be some hope
for predictable regularity in formant-pattern variability
from speaker to speaker. To characterise the regularity
beyond the fine details of its components, the acoustic-
phonetic segments selected from a given utterance are
treated as a speaker-dependent ensemble.

If the scaling properties of similarity are then
brought to bear on a multi-speaker family of ensembles
for a fixed utterance, it is possible not only to quantify
inter-speaker similarity but also invert the bulk of inter-
speaker differences. These scaling effects are illustrated
using multi-speaker formant data, which span a small
subset of the phonetic space for Australian English, but
which implicate a range of vocal-tract configurations.

2. Ensemble Similarity: The basic concept

The similarity phenomenon is conceptualised by way of
Fig. 1. The terminology developed to unfold the concept
will be our starting point.
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Along the ordinate axis, each rectangle contains a set of
dots which, for a given speaker and a fixed utterance,
schematise the relative positions of a formant’s
frequencies obtained for a sequence of phonetic
segments selected from that utterance. The unequal
spacing between the dots simulates the acoustic-
phonetic variation expected from segment to segment.
Such a data set is defined as a “Poly-Segmental formant
Ensemble” (a PSE or an ensemble in short).

The abscissa is a “speaker axis”, along which each
rectangle represents a different speaker. The constant
positioning of the dots within the rectangles illustrates
inter-speaker similarity for the phonetic sequence.

.
(IR NI Y]
(I TN N ]

" & 20 0
" 0 40 00
L]

* e 0 e

Figure 1: A systemic conceptualisation of inter-speaker
similarity per formant. “Speaker axis” along the abscissa;
“Poly-Segmental formant Ensemble” along the ordinate.

In the context of this work, the expression “speaker
axis” therefore implies a re-organisation of multi-
speaker data in terms of poly-segmental ensembles,
which conform to the similarity behaviour motivated
earlier. This is also schematised in Fig. 1, where the
ensembles are all geometrically similar to each other
and differ only in scale. In this sense, Fig. 1 portrays
the case of current interest, under which PSEs would be

linearly-scaled copies of each other.
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3. Acoustic-Phonetic Data

Using the systemic approach exposed above, we set out
to re-examine the acoustic-phonetic data presented in a
previous study of the word “hello” (Rose, 1999).

In addition to being a frequent lexical item in
spoken English, the word “hello” embodies a
situational sensitivity that facilitates elicitation with
spontaneous variability. Several situational tokens were
thus produced (at one sitting) by 6 male speakers: DM
(17 tokens), EM (3 tokens), JM (6 tokens), MD (12
tokens), PS (4 tokens) and RS (7 tokens). They all are
native speakers of Australian English with accents
ranging from general to slightly broad.
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Figure 2: Acoustic-phonetic analysis of spoken “hello” [a
reproduction of Rose’s (1999: 9) Figure 1]. Top panel:
Acoustic signal. Middle panel: Energy contour. Bottom
panel: Linear-prediction “polegram” & selected F-patterns
at 7 segments (see arrows). Segment labels: phonetic (on
top of waveform); operational (at right of arrows).

The acoustic-phonetic structure for the word “hello”
is adopted from Rose (1999), and consists of 7
segments (/v1, ell, v2@0%, v2@25%, v2@50%,
V2@75%, v2@100%/) which span a small subset of the
phonetic space, but which include a range of vocal-tract
configurations — one at the initial monophthongal target
/v1/, one in the middle of the lateral consonant /ell/, and
five at equidistant instants of the final diphthongal
gesture /v2/. For each segment and for every token, the
4 lowest formant-frequencies (F1, F2, F3 and F4) were
extracted using linear-prediction analysis.
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Per speaker and per formant-frequency, a poly-
segmental ensemble is defined numerically as the set of
token-averaged values obtained for each of the 7
segments. In sum, there are 6 speaker-dependent
ensembles, for which scaling relations are sought. In
the next section we proceed with details and
illustrations of the scaling technique employed for the
investigation of F1-, F2- and F3-ensembles.

4. Ensemble Scaling Technique

The scaling technique employed is based on Broad and
Clermont’s (2002) analogous development for
characterising the frame-to-frame similarity of co-
articulation effects on vowel formant ensembles
(VFESs). Under the first-order assumption of linearity,
the same technique is applicable to poly-segmental
formant ensembles (PSEs), provided the data at hand
exhibit a certain consistency in ensemble similarity
from speaker to speaker.

In Section 4.1 it is shown that the scaling technique
affords a preliminary diagnostic for lack of consistency.
In Section 4.2 the technique is completely unfolded.

4.1. Pre-Scaling Diagnostics

A basic aspect of the scaling technique is the use of the
speaker-averaged PSE (or the mean PSE), as a
reference ensemble with respect to which individual
PSEs are to be scaled. It stands to reason that the mean
ensemble should be desirable for its representative
behaviour and its statistical robustness. However, it is
its objective role that is paramount in seeking a relative
measure of ensemble-to-ensemble similarity. This quest
can be pursued more confidently if, indeed, there is
evidence of consistent similarity in the data at hand.
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Figure 3: Profile of correlations between 6 speaker-
dependent PSEs and the mean PSE (6-speaker average).
The very weak correlation of 0.18 for MD’s F3-ensemble
indicates his departure from similarity in F3.

One approach to detecting departure from similarity
is to look at the strength of correlation between
individual PSEs and the mean PSE. Fig. 3 displays such
correlations for the 6 speakers and for the 3 formants.
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Whilst there is a very strong indication of similarity
amongst all speakers’ F1- and F2-ensembles, there is
strong evidence against the inclusion of the F3-
ensemble for speaker MD. Rather than include him
only for F1 and F2, we chose to retain the 5 speakers
for whom all ensembles are consistently similar, thus
avoiding a compounding factor in the evaluation of the
scaling technique as a tool for expressing similarity.

Indeed, the correlations re-calculated (see Table 1)
for the non-problematic, 5-speaker set remain quite
strong with even a slight improvement for speaker
EM’s F2-ensemble and speaker DM’s F3-ensemble. It
is with this 5-speaker set of PSEs that the scaling
technique is fully exposed in the next section.

Table 1: Correlations between 5 speaker-dependent
PSEs, and 2 mean PSEs: one excluding speaker MD
(values at left of parentheses), and the other including
speaker MD (values in parentheses).

F1 F2 F3
DM | 0.96 (0.96) | 0.99 (0.99) | 0.89 (0.87)
EM | 0.96 (0.96) | 0.97 (0.96) | 0.97 (0.97)
JM | 0.98(0.97) | 0.97(0.97) |0.93(0.93)
PS | 0.97(0.97) | 0.98(0.98) | 0.96 (0.96)
RS | 0.95(0.95) | 0.99(0.99) | 0.99 (0.99)

4.2. Ensemble Scaling via Linear Regression

The strong correlations reported above have confirmed
the existence of consistent similarity amongst 5 out of
the 6 speakers’ ensembles examined, thereby paving
the way for the scaling implementation itself. However,
the procedure used for this purpose is more directly
motivated by first taking a glimpse at actual ensemble
data as shown in Fig. 4.

42.1.  Aglimpse at Poly-Segmental Ensemble data for F2

On the “speaker axis” of Fig. 4 are juxtaposed the F2-
ensembles obtained from the 5-speakers’ data. Perhaps
the first observation to be made is that the ensembles
are translated with respect to one another. While this
may be a useful factor of differentiation amongst
speakers, it is inconsequential to scaling. Instead, the
crucial factor of similarity is the ensemble-to-ensemble
regularity in relative position and spacing of the
segments’ formants. Although the ensembles shown in
Fig. 4 do not appear to be exactly linearly-scaled copies
of each other, there is a sufficiently noticeable trend to
warrant the next step leading to scaling relations.

4.2.2. Linear-Regression Procedure

The scaling procedure consists of linear-regression fits
of each speaker’s PSE translated by its mean against
the mean of all translated PSEs. This is illustrated in
Fig. 5 for speaker DM, where the slope of the fitted line
is an estimate of the scaling factor, justly referred to as
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an ensemble scale that describes a proportion with
respect to the mean ensemble. The scales thus obtained
for both DM and the other 4 speakers are also shown in
Fig. 4 at the bottom of the rectangles.
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Figure 4: Five-speaker family of F2-ensembles. Ensemble
scales are shown at bottom of rectangles. Fig. 5 illustrates
how the scale for DM’s ensemble was obtained.
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Figure 5: Linear-regression fit through DM’s PSE against
the mean PSE. Scale estimate = line slope.

4.2.3. Linear-Regression Fitness

The linear regression also yields a measure of
goodness-of-fit expressed as the Root-Mean-Squared
(RMS) deviations of the fitted lines from the ensemble
data. Table 2 gives such measures with numerical
values that are tolerable, and ranges for F1 ([17-28]),
F2 ([17-57]) and F3 ([23-63]) that lie comfortably
within the range of perceptual difference limens.

Table 2: RMS deviations (Hz) of fitted lines.

F1 F2 F3
DM 25 34 42
EM 28 55 63
JM 17 57 47
PS 22 33 36
RS 24 17 23

Beyond the procedural steps described above, a closer
examination of the ensemble scales is desirable to gain
deeper insights into their properties and their potency.
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5. Ensemble Scales

We now return to the similarity proposition, which
motivated the procedure described above for deriving
scaling relations. The numerical profiles of such
relations are examined in this section, and shown to give
concrete insights into scaling behaviours amongst our 5
speakers. In particular, the question of uniformity across
formants is found to be a compounding factor that will
lead to a procedural refinement of the scaling technique.

5.1. Uniformity: Observations

The ensemble scales shown in Fig. 6 are based on the
original (token-averaged) PSEs and, for this reason,
they will also be referred to as raw scales. The most
striking observation is that DM and EM stand out with
F3-scales that are at odds with the patterns for the other
speakers. In addition to this apparent aberration, there
are very weak correlations between F1- and F2-scales
(0.02) and between F2- and F3-scales (-0.17). The raw
scales clearly exhibit a strong non-uniformity that goes
against the notion of similarity. A deeper investigation
is warranted and undertaken in the next section.
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Figure 6: Per-formant profile of RAW scales for the 5

speakers. “RAW?” signifies that the scales shown are
based simply on the original (token-averaged) PSEs.

5.2. Uniformity: Insights from Vocal-Tract Length

Thus far, the scaling technique has yielded insights that
might have been obscured if it had simply encompassed
all formants in the first place. Nor does it need to as a
tool for expressing similarity. The non-uniformity is
therefore investigated by independently evaluating the
formant ensembles before and after ensemble scaling.

5.2.1.  Vocal-Tract Length (L4)

To understand the possible causes of the non-
uniformity observed earlier, we first appeal to a
measure proposed by Paige and Zue (1970) for
estimating vocal-tract length. The measure has the
desirable property of implicating all formants, up to F4
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in our case and hence referred to as L4. The left panel
of Fig. 7 displays, speaker by speaker, the raw L4 as a
function of phonetic segment. The pattern of variations
is continuous as the speakers’ gestures progress from
segment to segment with differing degrees of lip
rounding, conceivably with concomitant adjustments of
larynx height. Whilst the overall pattern is globally
“similar” from speaker to speaker, it is quite different
amongst the 5 speakers in absolute terms. The
intriguing question then arises — Is the non-uniformity
manifest in the raw scales partly induced by differences
in vocal-tract length patterns?

5.2.2. Inverse Scaling

To answer the question raised above, it is critical to be
able to examine inter-speaker variation left after
ensemble scaling. This is readily achieved by using the
reciprocals of the raw scales for inverse scaling the
ensembles formant by formant. The L4 measure is then
re-applied to the inversely scaled formants, yielding the
new pattern shown on the right panel of Fig. 7.
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Figure 7: Profile of Vocal-Tract Lengths (L4s) based on
F1, F2, F3 and F4. Left panel: L4s based on raw formant
ensembles. Right Panel: L4s based on inversely-scaled
formant ensembles.

The new pattern is revealing in several ways. The
spread in L4 amongst speakers is now much smaller,
thus causing a typical behaviour to emerge from
segment to segment. This result clearly indicates that
the scaling technique has captured significant similarity
amongst the 5 speaker’s ensembles. However, it is also
evident that the residual pattern exhibits a certain lack
of similarity from speaker to speaker, which suggests
that pre-normalisation of the raw ensembles by L4
might render them more similar and hence more
consistent with the scaling technique itself.

Pre-normalisation is attempted in the next section,
where the results presented yield a more definite
perspective on the ensemble scaling approach.
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6. Ensemble Scales and Pre-Normalisation

The argument put forward in the previous section has
brought into focus the fact that the scaling technique
assumes no knowledge of inter-formant relationships
and, therefore, it should not be able to handle the
speaker-to-speaker differences in vocal-tract length
patterns observed in Fig. 7. Our aim here is to secure a
fairer outcome of the scaling technique by pre-
normalising the raw PSEs.

In Section 6.1 we describe the pre-normalisation
procedure and, in Section 6.2, we cross-examine the
resulting scales given in Fig. 8 with the raw scales
shown in Fig. 6. We will also return to vocal-tract
length by way of Fig. 9, which illustrates the effects of
pre-normalisation and inverse scaling on the pattern
from speaker to speaker. Finally, the two stages put in
place will take us to Section 6.3, where the raw data
and the inversely-scaled data (L4-normalised) are
contrasted in the planes spanned by F1 and F2, and by
F2 and F3.

6.1. Normalisation by VVocal-Tract Length

The technique used for normalisation by vocal-tract
length is inspired from Wakita’s (1977) approach to
automatic identification of 9 American English vowels
uttered by 14 men and 12 women. It is relevant to note
that, in accord with the reasoning unfolded in Section 5,
Wakita argues that his approach is “not unreasonable as
a first step toward inter-speaker normalisation in
consideration of the structural similarity of the human
vocal organs from individual to individual” (p. 184).

By analogy with Wakita’s procedure, therefore, the
ratio of raw L4s to their average is adopted as a
normalisation factor. For each of the 7 phonetic
segments, there are 5 such ratios corresponding to the 5
speakers, which are then used to normalise all the
formants for that segment.

6.2. Uniformity Revisited

By applying the scaling technique to PSEs based on
L4-normalised formants, a more meaningful picture
emerges from the new ensemble scales shown in Fig. 8.

The aberrant behaviour observed earlier for DM’s
and EM’s scales has now disappeared and, as a result,
the scales follow a much more consistent pattern across
all speakers. DM’s and EM’s ensembles are relatively
larger by comparison with the other 3 speakers’
ensembles, and the downward trend from left to right of
Fig. 8 is also consistent for the 3 formants. The inter-
formant correlations between scales have expectedly
grown stronger: from 0.02 to 0.68 between F1- and F2-
scales, from 0.76 to 0.89 between F1- and F3-scales,
and from -0.17 to 0.93 between F2- and F3-scales.

The emergent perspective is indeed clearer. The
bulk of the variations manifest in the 5-speakers’
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formant data appears to be caused by inter-speaker
differences in vocal-tract length through the 7 phonetic
segments representing the word “hello”. This is
confirmed in Fig. 9, where the residual variation in the
new L4s is extremely small. Collectively, these results
show a believable tendency towards uniformity,
thereby lending support to the similarity proposition.
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Figure 8: Per-formant profiles of the 5-speakers’ ensemble

scales that result from pre-normalising all the raw PSEs by
vocal-tract length (L4).
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Figure 9: Profile of Vocal-Tract Lengths (L4s) based on
F1, F2, F3 and F4. Left panel: L4s based on raw formant

ensembles. Right Panel: L4s based on L4-normalised and
then inversely-scaled formant ensembles.

6.3. Reduction of Inter-Speaker Variation

The two-stage process described above has yielded two
measures — ensemble scales and vocal-tract length
estimates, which have been instrumental in unfolding
the similarity properties of our 5-speakers’ formant data.
It is still a question as to how much of the inter-speaker
variation is indeed accounted for by these measures.
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Figs 10 (F1-F2 plane) and 11 (F2-F3 plane) uncover
the significant effects of both measures when they are
applied in tandem through the two-stage process. The
reduction in speaker variations is clearly substantial
across all 7 segments in both planes. Fig. 12 gives a
quantitative summary of the reduction in terms of RMS
values, which are brought down to the expected level of
inter-token variation for F1, F2 and F3.
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Figure 10: F1-F2 plane for 7 segments in “hello” from 5
male speakers of Australian English (DM, EM, JM, PS,
RS). Raw data in blue (dashed lines); data reduced by
inverse ensemble scaling (L4-norm.) in red (solid lines).
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Figure 12: Speaker Spread (RMS). Left Panel: raw data;
Right Panel: L4-normalised and inversely scaled data.
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7. Summary

We have presented a new approach for handling inter-
speaker variations. The approach is first motivated by
similarity as an underlying phenomenon that transcends
the multiple sources of speaker differences and,
therefore, unlocks the predictable regularity in formant-
pattern variability from speaker to speaker. It is also
motivated by the fact that there are scaling properties
associated with similarity, which provide a pathway for
describing the regularity in practical terms.

Beyond these considerations there is a systemic
philosophy that permeates the methodology developed
to capture the underlying similarity. Indeed, the poly-
segmental ensemble has been instrumental in
uncovering speaker-specific properties of the “hello”
data, which otherwise would have been obscured by
looking at one phonetic segment at a time. In this sense,
our notion of a poly-segmental ensemble meshes well
with Laver’s (1980) poly-segmental definition of a
setting.

The approach is still in its infancy, as it would need
to be further evaluated with a range of segmental
structures and speakers. Nevertheless, the results
reported here have revealed the potentiality of the
approach as well as the effectiveness of the techniques
used to implement it.
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